
LLNL-MI-692819

DOE-COE Breakouts

J. R. Neely, M. W. Epperly

May 23, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Performance Portable
Abstractions Breakout!

•  Five questions:!

•  What is performance portability? Isn’t the real question, what are we targeting for
our codes; what is ‘good enough’? What have we shown is possible?!

•  At what level(s) do we want abstractions? High level such as DSLs and
architecture optimized algorithms/libraries? Low level data and task
parallel programming models? What are the successes and failures we have
seen so far?!

•  What are the tradeoffs of different approaches? Directives, Attributes, Language
extensions, DSLs? Any other categories? What have been the successes? What
challenges remain?!

•  What do we need from: Vendors? (Open)Community? What have we been happy
with and what do we see as critical gaps?!

•  What do we want to see supported by our programs? ASC, ASCR, ECP, etc.!

What is performance
portability?!

•  Using John Pennycook's definition: !

•  An application is ‘performance portable’ if it achieves a
consistent level of performance across platforms (relative
to the best known implementation on each platform).!

•  With some additional qualifiers:!

•  X% of the code must be shared between implementations
(e.g. 95%)!

•  The implementation must exploit available architecture
features!

At what level do we want our
abstractions?!

•  Application developers can use library-level abstractions!

•  Leave the problem of performance to the library developer!

•  One library per architecture is no big deal!

•  We need to build these high-performance libraries!

•  Developers want abstractions as low-level as possible, while remaining portable!

•  This could be inside the libraries used by applications!

•  Legacy applications require incremental adoption!

•  Fortran cannot be ignored, but what can we do?!

•  Pre-processing, RAJA/Kokkos interop with Fortran, f2c

What are the tradeoffs of
different approaches?!

•  DSLs provide opportunity for kernel fusion, but inhibit incremental
adoption.!

•  Success story: IRP DSL generating optimized Fortran from Python!

•  RAJA/Kokkos great for rapidly prototyping optimizations!

•  Abstractions using cutting-edge language features at the mercy of
compilers!

•  Push to add parallelism to language standards makes them more
bloated!

•  This makes more work for compiler vendors !

What do we need from
vendors and the community?!

•  Focus on compilers!

•  Support standards!

•  Optimize code even through our chosen abstractions!

•  Tools that support our chosen abstractions (e.g. debug
information)!

•  Better build systems!

•  Difficult to combine wrappers, preprocessors and
compilers!

What do we want to see
supported by the programs?!

•  Explicit support targeting system software (c.f.
compiler research)!

•  Evangelization experts who can spread expertise,
visit application teams to share knowledge!

To Summarize!
•  Performance portable: substantial amount of shared

code, exploits all target architecture, achieves
consistent fraction of best possible performance!

•  Low-level abstractions for computer scientists!

•  Library-level abstractions for application developers if
possible!

•  Improved compilers and tools!

•  Program support for abstraction layer experts!

